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NUMBERTHEORETICAL ENDOMORPHISMS
WITH o-FINITE INVARIANT MEASURE

BY
F. SCHWEIGER

ABSTRACT

A class of measurable transformations which serves as a model for several
f-expansions is discussed. Sufficient conditions for ergodicity and the exis-
tence of a o-finite invariant measure are given.

1. Introduction

Various models have been proposed which cover almost all known continued
fraction-like expansions possessing a finite invariant measure equivalent to
Lebesgue measure (Rényi [7], Schweiger [8], Fischer [4]). However, there are
interesting examples of simple algorithms which do not exhibit a finite invariant
measure. In this note an ergodic theory is given and some examples are worked
out in detail.

2. A class of numbertheoretical endomorphisms

Let (B, %, A) be a probability space. We consider transformations 7 : B — B
subject to the following conditions.

(@) T is measurable and nonsingular.

(b) There is a partition {B(k)|k € I} the fibres B(k) of which are
measurable. The index set I is finite or countable.

(c) There is a family of measurable and nonsingular mappings
V(k):B— B(k),k €1, such that V(k)T = 14, and TV (k) = 1.

(d) We define

Viki,---, kn) = V(k,---, k._1) V(kn)
B(kl, et kn) = V(kh cTy, kn——l) B(kn)

and Z™ denotes the family of all cylinders B(k,,- -, k,) of order n. Then we
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suppose that & = U ;_, " generates #. In our examples this will follow

from
lim ( sup diam z) =0.
n.o \ zer'™
(e) We put
y _dAV(ky, - k)
Alky, - - kn) (x) S T e— (x)
Given a constant C =1 we call a cylinder B(k,, -, k,) an R-cylinder if it

satisfies ‘‘Rényi’s condition”

(e.l)
ess supA(ky, -+, k) (x)=C essinfA(ky, -, k.)(x).

€8 XEB

The set of all R-cylinders with constant C is denoted by 4(C, T). The ideal case
is that we can find a constant C = 1 such that 4(C, T) = &. In this case (L.emma
4) one can show the existence of a finite invariant measure u ~ A.

In the examples we want to cover the case §(C, T) is a proper subclass of Z
forall C =z 1. The examples suggest to impose the following weaker condition

(e.2) There can be found a constant C = 1 and a class R(C, T) C 4(C, T)
(f.1) If Bk, -, k.)€ R(C, T) then B(a,, -, a,. k;, -, k,) € R(C, T)
for any choice of the sequence a,, - -, a,.

This is a kind of Markov property.
(f.2) Let

Dn: ={B(ki - k) EZ™|B(k),- - k) EZ\R(C.T), 1 =5 =<n),

then

lim > A (B(k,.- -, k,)) = 0.

Note that we do not assume

> D ABky, - k) <.

n=1 &,

This condition would again imply the existence of a finite invariant measure
®w~ A

In Section 3 we will prove some general results (ergodicity of T, existence of
a o-finite invariant measure u ~ A). In Section 4 we will work out some
examplies.
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3. Some general results
LemMa 1. For any Bk, -, k.))EZ™ NR(C, T) we have

AMTT"ENB(k,~ k)= C'AE)A(B(ky, -+, kn)).
ProOF.

AMTT"ENB(ky,: ", ka)) = f ce(Tx)dA (x)

B(ky, - kn)

=L ce(AKL - - kn) () dA(y)

Z C'AME)A(B(ky, -+, kn)).
We now introduce the class
B ={Bky, - k) EZ™|B(ki," ", ki) ER(C, T), B(ky,- -, ko_)) € D1}
We remark that U ., B, U 9, is a disjoint covering of B.

LEMMA 2. Any cylinder is within a set of \-measure zero a disjoint union of
R-cylinders.

ProoF. We may assume B(k,,---,k,) E Z\R(C, T). Then we form the
disjoint union representation

B(k,, -, k)= O U Bk, kn,ai-+-,a,)

t=1 B(a. .a)ER,

U U B(kh"'akmbh"'vbM)-

B(by, -, bm)EDm

Here we use (f.1). Then we have
A( U B(k.,---,k,,b.,---,b,..))=;A(V(kl,-~-,k,.)B(b..---.b,..)).
B(by, by )EDm m

Using (£.2) and the fact that A(A) = 0 implies A(V(k,,- - -, k.)A) =0,
we are done.
THeOREM 1. T is ergodic with respect to A.
Proor. Let T™'E = E, then we have
MENZ)=C'"A(E)A(Z)

for any R-cylinder Z. Lemma 2 implies that this is sufficient to conclude ¢ = 1
a.e.
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LemMma 3. T admits a o-finite invariant measure w ~ A iff there exists a
measurable function f such that

f0) =2 fVER0AK)(x)  ae.
Proor. We take u(A)= [.f(x)dA(x) and consider the defining equation
u(T"A)=g,p(V(k)A)= n(A).

LEMMA 4. If there is a constant D such that 4(D, T)=Z, then T admits
even a finite invariant measure v~ A and D'=f=D a.e.
Proor. In this case

AT "B ki, k)
=S A B amki, - - ka))

=2f @ ) (Vs - k) X) Ak, - - -, k)(x) dA ().

Therefore, using (e.1) which condition now applies to all cylinders, we obtain
D™'A(B(ki, - k) = A(T "Bk, "+, ka)) = DA(B(ky, - - -, ka)).

From known theorems in ergodic theory (see e.g. Friedman [5]) the lemma
follows.

Now we define an auxiliary transformation T*: B — B as follows:
T*x =T"'x iff xe€ Bk, -, k), Bk, -+, k) E B,
As can be checked easily, the following lemma is true:

LEMMA 5. T¥* is a numbertheoretical endomorphism in the sense of Section
2. The fibres of the time-one-partition are the cylinders B(k,, -, k,) € B.,
n=12,---.

Furthermore, we have
G(C, T*=%*
and there exists a finite T*-invariant measure p* ~ A.

Proor. The assertion on the time-one-partition follows from the very
definition. Using (f.1) we see that all cylinders (with respect to T*) are
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R-cylinders (with respect to T) and therefore satisfy (e.1). We can apply
E

Lemma 4 with D = C, T replaced by T*, v = u*.
If we put u*(A)=[,f*(x)dA(x), we note that Lemma 3 implies

P =3 S VK ka)x)AK - k) ().

Lemma 6. 25, 2, Atk - - k) (x)<x a.e.

ProOOF. Let B(a,, -, a,)€ R(C, T). Then

>3 Atki, -y k) (x)dA(x)

n=1 p
Blay.dm)

x
n-1

=
>

/\(B(kh N km a,: -, am)))

o

Bk, kpg)Cop

S Bk k) = S Bk .k..,k,..l,“-,k..m))

Prsm

3
/\

,\(B(k.,-- k.)) - lim 2 > A(B(ky, -, kn-y))

j=1 s,

1
™M

:

2 2 MBky, - k).

3

Here we have used (f.2) to obtain the convergence of the majorant and the fact
that (f.1) implies: Let B(a..---,a,)€ R(C,T) and B(k,,- -, k,) E D., then
B(ky, - knai, . an) & Du.m By Lemma 2, Lemma 6 is proved.

THeorem 2. T admits a o-finite invariant measure i ~ A.

Proor. The measurable function
fx) =)+ 2 2 AV (b, ba)x)Ab, - - -, by) (x)

is finite a.e. by Lemma 6. We will show that f is the density of an invariant
measure:

> F(Vk)x)AKk) (x) = Z [f*(V(k)x)A(k)(x)

+ 2} ;f*(v(alw”.aan)

: V(k)X)A(ax.”-,a..)(V(k)X)A(k)(X)]
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=:2;[f*<v%k)x)A(k)<x>+-ﬁi S f(Van- - an k)x)

n -1 B(ay,.a,)€ 4y

A%ww%“ﬂﬂ

=2 > V(@ @ k)AL - an 1 k) (x)

n-1Bay. - -.a, 1.k)C.8,

+ > XV, an kDAL, an, k) (x)

n=1 B .an 1 KIELy

=)+ 2 XV a1 kDMay e LK) (x) = f(x).
Note that we have used B(a,,---,a,.,.k)E %, iff B(a,,---.a,-))E G, , and
B(ay, - -, a.-,k)E R(C, T).

REMARK. f is integrable (and u is a finite measure iff
:—IEQHA(B(kI7..'0kn))<x'

4. Examples

All examples given are on the probability space B =[0,1]mod0, F = o-
algebra of Borel sets, A Lebesgue measure. We first prove

LemMa 7. Suppose that all V(k) are continuously differentiable and there is
a point 'y € [0, 1] such that Ty =y and T'y = 1, then for every C = 1 the class
%(C,T) is a proper subclass of .

Proor. From Ty =y we see that y has a purely periodic expansion

k(y)=b,s =1.2,---. Therefore for every n = 1 by the chain rule we obtain
n dT" !
A, b)) = Ab - b)T =[S0 0| =1
Nt N

n n
Hence,

sggA(b,---,b)(x)é 1.
n

On the other hand,

A(B(b,---,b))=f A(b,- - -, b)(x)dA(x).
-~ 8 N
n n

Therefore
infA(b, -, b)(x) = e(n),

xER

where lim,_.e{(n)=20.
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CoRrROLLARY. In such a point y we clearly have f(y)= + .

Proor. Insert y in the formula given by Theorem 2 and observe
V(b,---,b)y =y.

Now we discuss several examples.

(1) This example is due to Rényi (Adler [1]). It is also discussed in Rudolfer
[8].
1={0,1,2,-- -,

4
BK = | 5 45|

x+k

Vo = e

Tx = X mod 1
1—x

1
(C. + DxY
C|=k|+1, D|=1

Aky, - k) (x) =

C,»l = (Cs + D,)ks+! + C,, D5+] = C, + D,.
Therefore C, = D, iff k, = 1.
We take C =4 and we take
R4, T)={B(ky, -, k)|ks =1}

2. ={B(0,---,0)}.
s

We remark that T0=0 and T'0=1. In fact,

_ 1
AQ. 00 = 7
N
-
A(B(O,---,0) = s
s

The density of the invariant measure is known:

_1
f(X)—x.
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Now take

1+

E=B(0,0,---,0)=[0 ! ]
S

Since the indicator function of [0, 1]\\E is integrable with respect to u, the
ergodic theorem implies

i 1 N-1 .
lim < > ce(T'x)=1.

i=0

This result states that the frequency of a block 0- - -0 in the sequence of digits

. haaVerd
is a.e. one. s
Put ¥(x) =1- x, then the transformation ¥ TV¥ gives a continued fraction-

like algorithm which has been useful in algebraic geometry (Hirzebruch [6],
Cohn [3)]).

(2) This algorithm is mentioned in Adler [1].

I={0,1}
- [543

Vk)x = L arctan (2 tan 7rx)+£(

27 2
Tx = 1 arctan M.
T 2
A direct calculation of A(k,,- - -, k,) seems to be complicated, but Fischer was

able to prove
Lemma 8 (Fischer). Rényi’s condition (e.l) is satisfied for the class
R(e*", T)={B(ki, -, k)|k;-1=0,k, =1 or k., ,=1,k, =0}
Proor. We note

4 wo _ 24 sindax

T'x=73 +3cos2mx’ ¥ (1+3cos2mx )
Therefore,

|T"z/T'z|=6m forall z€ B.
Clearly
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(T*)'n
(T*)'v

Ak k) (x)

SUP 1Ak ko )(y)

xy€B

= sup
nue€ Bk, kg)

Then we estimate

| ’(T’)’n

og (T ;]logT(T n)—log T'(T'v)j

s 1
6wy [Tn-Tw|
i=0

§6W§A(B(k.+|; : 'vks))~

We will only discuss the case k, , =0,k = 1. Then we will show

(*) A(B(ai, -+, a,0,1) =A(B(0,---,0,0,1))
n

for any choice of (a,,-- -, a.).

If we take this result as granted, we conclude

S AB U, ks 2,0, 1)+ A(B(D)

é:ZA(B(O,---,O,l))é 1.
i

Israel J. Math.,

Now we will prove (*) by induction on n. The case n =0 is clear. Using

2

Ak x) = 5—3cos2mx

cos2mV(0)x = —cos2wV(1)x,

one verifies (by induction on t)

A(K)(V(0,---,0,0,1)1) = Ak)(V(L,---,1,0,)1).

t t
Now let us assume (a,, -, a.) #(0,---,0). Then we have
V@, ---,0,0,D)1 = V(ay,-,a.0,1)x
n-—1
=vQ, 1,0, 1)l.

n-—1
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Now we calculate

A(B(ai, -+, a.,0.1)

=f A, a0, 1) (x) dA(x)

=f Ala. X V(dy -+, a,0,1D)x)A(as -+, a,. 0, 1)(x)dA (x)

=A(aXVQO,---,0,0, DA(B(as -, a..0,1))

n—1
=A(a)(VO.---,0,0,)DA(B(,---,0.0.1))
n-|\ n-—1

= f A(a)(v(0,---,0,0,D1)x)A. - - -, 0,0, 1)(x)dA (x)

n-—1 n-1
=A(B(@,---,0,0,1)).

n
Here we used that A(k) is independent of k. Similarly one calculates

A(B(1,0,---,0,0,1)) = A(B(0,0,---,0.,0,1)).
n-—1 n—1
Now we have seen that we can choose C = ¢ and R (e®", T) according to the

preceding lemma.

9. ={B0,---,00,B(,---, }.

5 s
In this case T0=0,TI=1and T'0=T'1 = 1. Using
2
cos’2mV(k)x = i cosdmx

S5-3cos2mx’

one can prove

limcos27V(0,---.0)x = limcos 27w V(l, -, 1)x = 1.

n—sx N —————

n-ex

n n
From this condition (f.2) follows. The density of the invariant measure is
known:

!
[ —cos2nwx’

fx)=
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Note. The transformation S: R — R defined by Sx =x — I/x a.e. pre-
serves Lebesgue measure. We define

g:[0,1]1-> R, x—»tan(xn——zq) a.e.,

then easily that
Sy = yT

and
2
gl—cos2mx dx

A(YE) =

Hence we can deduce from Theorem 1 the main theorem of the paper by Adler
and Weiss [2]: S is ergodic.
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